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Abstract. Statistical thinking in wildlife biology and ecology has been profoundly
influenced by the introduction of AIC (Akaike’s information criterion) as a tool for model
selection and as a basis for model averaging. In this paper, we advocate the Bayesian paradigm
as a broader framework for multimodel inference, one in which model averaging and model
selection are naturally linked, and in which the performance of AIC-based tools is naturally
evaluated. Prior model weights implicitly associated with the use of AIC are seen to highly
favor complex models: in some cases, all but the most highly parameterized models in the
model set are virtually ignored a priori. We suggest the usefulness of the weighted BIC
(Bayesian information criterion) as a computationally simple alternative to AIC, based on
explicit selection of prior model probabilities rather than acceptance of default priors
associated with AIC. We note, however, that both procedures are only approximate to the use
of exact Bayes factors. We discuss and illustrate technical difficulties associated with Bayes
factors, and suggest approaches to avoiding these difficulties in the context of model selection
for a logistic regression. Our example highlights the predisposition of AIC weighting to favor
complex models and suggests a need for caution in using the BIC for computing approximate
posterior model weights.
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INTRODUCTION

It would be nice if there were no uncertainty about

models. In such an ideal world, a single model would be

available; the data analyst would be in the enviable

position of having only to choose the best method for

fitting model parameters based on the available data.

The choice would be completely determined by the

statistician’s theory, a theory which regards the model as

an exact depiction of the process that generated the data.

It is completely appropriate and standard practice for

statistical methods to be developed in that ideal world;

we return to this theme subsequently. But in wildlife and

ecological applications, many data sets are observation-

al. Numerous covariates are available, and model

selection is an important part of the inferential process.

It is clearly wrong to use the data to choose a model and

then to conduct subsequent inference as though the

selected model were chosen a priori: to do so is to fail to

acknowledge the uncertainties present in the model

selection process, and to incestuously use the data for

two purposes (Chatfield 1995, Draper 1995).

Akaike’s information criterion is defined by AIC¼�2
log(MaxLikelihood) þ 2k, where k is the number of

parameters in the model. Models with smaller values of

AIC are favored on the basis of fit and parsimony. AIC

weights for a collection of models are proportional to

exp(�1/2 AIC). For details, see Burnham and Anderson

(2002).

The introduction of AIC for model selection and of

AIC weights for model averaging have been positive

contributions to the fields of wildlife biology and

ecology, providing an objective basis for model selection

and multimodel inference. The work of Burnham and

Anderson (1998, 2002) has been enormously influential

in this regard, resulting in a major paradigm shift away

from hypothesis testing as a tool for model choice.

However, there appears to be a growing resistance to

these ideas in the ecological and wildlife literature (e.g.,

Guthery et al. 2005, Richards 2005, Stephens et al. 2005).

Here we offer some thoughts on model selection and

model averaging from a Bayesian perspective.

We agree with Burnham and Anderson that it is

important to distinguish hypothesis testing (conditional

on a model) and the process of selecting the model, and

are in agreement with the philosophy that has motivated

their work on model selection. That said, we question

whether multimodel inference is best accomplished using

AIC. Our position is that the Bayesian approach to

multimodel inference provides a wider framework in

which AIC-based methods can and should be evaluated

and alternatives considered.

Our paper is organized as follows: first, we provide an

overview of Bayesian multimodel inference, introducing
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notation and basic formulas to be used in the remainder

of the paper. Next, we respond to an objection often

raised against Bayesian multimodel inference, that

‘‘truth in the model set’’ is an unrealistic and philosoph-

ically untenable assumption. We argue that the use of

model weights in prediction requires their interpretation

as posterior model probabilities. This observation raises

the question as to which set of prior model weights is

implicitly chosen when one uses AIC weights; the answer

provides valuable insights into the operating character-

istics of AIC in multimodel inference, explaining its well-

documented tendency to favor highly parameterized

models (see Kass and Raftery 1995). We recommend

that analysts use weighted BIC (Bayesian information

criterion) as a computationally simple alternative to

AIC, based on explicit selection of prior model

probabilities, rather than the default choice implicit to

the use of AIC. The weighted BIC (and AIC, as a special

case) use approximate rather than exact Bayes factors,

which are the fundamental quantities for updating prior

to posterior model probabilities. We illustrate difficulties

with Bayes factors, and suggest approaches to avoiding

them in the context of model selection for a logistic

regression. Our example highlights the predisposition of

AIC weighting to favor complex models and suggests a

need for caution in using the BIC to compute

approximate posterior model weights.

AN OVERVIEW OF BAYESIAN MULTIMODEL INFERENCE

Briefly described, Bayesian multimodel inference

(BMI) has three ingredients. The first is a set of models

M¼fM1,M2, . . .,MRg. Corresponding to model Mi is a

probability distribution f(x j h(i), Mi) fully specified

except for an unknown parameter set h(i). It is assumed

that one of the models is true, in the sense that the data

are a sample from f(x j h(i), Mi). The second ingredient

for BMI is a set of priors on parameters, one for each

model in M; we denote the prior on parameters h(i) of
model Mi by g(h(i) jMi).

The first two ingredients combine to form the

marginal distribution

PðxjMiÞ ¼
R

f ðxjhðiÞ;MiÞgðhðiÞjMiÞdhðiÞ ð1Þ

which is the average probability distribution under

model Mi averaged against the priors for the parame-

ters. Regarded as a function of the model, for fixed data,

it serves as a likelihood function for the model. The

Bayes factor for comparing models i and j is the ratio of

these model likelihoods, namely,

BFi; j ¼
PðDatajMiÞ
PðDatajMjÞ

:

The final ingredient for BMI is a collection of prior

probabilities fp1, p2, . . ., pRg assigned to the collection

M, independent of the data; pi ¼ Pr(Mi) is the prior

probability that model Mi is true. Bayes’ theorem relates

posterior to prior model probabilities via the formula

PrðMijDataÞ ¼ PðDatajMiÞPrðMiÞX
j

PðDatajMjÞPrðMjÞ
: ð2Þ

The Bayes factor for comparing models i and j can be

shown to be the ratio of posterior to prior odds, i.e.,

BFi; j ¼
PrðMijDataÞ=PrðMjjDataÞ

PrðMiÞ=PrðMjÞ
:

Dividing numerator and denominator on the right-hand

side of Eq. 2 by P(DatajM1), we obtain

PrðMijDataÞ ¼ BFi;1piX
j

BFj;1pj

: ð3Þ

Thus, it is seen that Bayes factors provide a mechanism

for converting prior model probabilities to posterior

model probabilities. Posterior model probabilities are

used both for model selection and model averaging: if

we wish to identify the best supported models in M, the

choice is naturally made on the basis of these posterior

probabilities; if we wish to produce a model-averaged

prediction, the laws of probability lead to

PrðPredictionjDataÞ
¼
X

i

PrðPredictionjData;MiÞPrðMijDataÞ: ð4Þ

Thus, model selection and model averaging are naturally

linked under BMI. For a thorough introduction to

Bayesian multimodel inference, refer to Draper (1995),

Hoeting et al. (1999), and Wintle et al. (2003).

Frequentist alternatives are considered in Hjort and

Claeskens (2003) and Claeskens and Hjort (2003); in the

subsequent discussion, Raftery and Zheng (2003) argue

convincingly for the superiority of Bayesian methods,

even when evaluated from a Frequentist perspective.

One final piece of background material will be useful

for our discussion. The Bayesian information criterion is

defined by

BICi ¼ �2 log½ f
�

DatajĥðiÞ;Mi

�
� þ ki logðnÞ

where ĥ(i) is the maximum likelihood estimator of the

parameters for model i, ki is the number of parameters in

model i, and n is the sample size. This quantity can be

used to construct an asymptotic approximation to BFi,j,

namely exp(�(BICi � BICj)/2 (Kass and Raftery 1995).

Substituted in Eq. 3, we can obtain approximate

posterior probabilities:

PrðMijDataÞ’ expð�BICi=2ÞpiX
j

expð�BICj=2Þpj

: ð5Þ

Assigning uniform prior probabilities to the set M, pi [

1/R, yields what are commonly referred to as BIC

weights; Eq. 5 can be thought of as a generalized BIC

weight.
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A PRELIMINARY OBJECTION ADDRESSED

It is sometimes claimed that Bayesian multimodel

inference (BMI) is philosophically unsatisfactory on the

grounds that it requires that ‘‘truth be in the model set.’’

We believe this objection to be overstated.

Some might object to there even being such a thing as

‘‘Truth’’; others might be willing to concede that such a

thing could exist, but that we would never be able to

identify it if we came across it. Most would concede that

it is unlikely that Truth is in our model set. But this

discussion, while entertaining philosophically, is a red

herring with regard to the utility of Bayesian model

averaging. Conditioning on ‘‘Truth in the model set’’ is no
less innocent than conditioning on individual models for

the purpose of developing estimators in parametric

analysis. Maximum likelihood estimators used in calcu-

lating AIC values are derived assuming the individual

models are true, regardless of whether one believes the

model to be a perfect depiction of data generating

mechanisms; the estimates are interpreted conditionally,

that is to say, in context of this assumption. Similarly,

Bayesian model selection and model averaging are

conducted and interpreted having conditioned on a

model set, without requiring intellectual certainty that

any one of the models is Truth.

Let us concede for the moment that such a thing as

Truth exists, and is one of some vast collection of

potential models MM, of which M, as previously

described, is only a small subset. We may conceive of

Nature’s choice as a multinomial experiment, a single

value drawn from MM. It could be that Truth is in M; it

could be otherwise. One way or the other, we may carry

out the Bayesian calculus conditioning on the event that

nature’s draw from MM was in M; that is, that truth is in

our model set. The subsequent process of updating prior

probabilities to posterior probabilities is unchanged.

But doesn’t this mean that we are basing our analysis

on a hypothetical we presume to be false? Of course it

does! We do similar things all the time in scientific

endeavors. Box (1976) said it well:

The statistician knows, for example, that in nature

there never was a normal distribution, there never was

a straight line, yet with normal and linear assump-

tions, known to be false, he can often derive results

which match, to a useful approximation, those found

in the real world.

Model-based statistical inference uses methods devel-

oped under assumptions that the models considered are

‘‘true.’’ Inferentially valid application of these methods

does not require that the real world conform exactly

with the model, but that the model be a good

approximation. The mathematician doesn’t question

whether X is really a normal random variable in

developing the methods, or even whether such a thing

exists in the real world. Application of the methods is

conditional on the assumption, which is not the same as

saying we believe it is ‘‘truth,’’ but only that it is ‘‘close

enough to truth’’ so as not to misguide our decisions.

So then, rather than say that Bayesian multimodel

inference ‘‘requires that truth be in the model set’’ we

would say Bayesian multimodel inference operates as

though truth were in the model set. Berger and Pericchi

(1996) refer to ‘‘truth in the model set’’ as ‘‘standard

Bayesian language’’ and note that ‘‘one does not strictly

have to assume that one of the models is true.’’ They

suggest that Bayes factors ‘‘be interpreted solely in terms

of comparative support of the data’’ for the various

models. Bayesian multimodel inference uses ‘‘truth in

the model set’’ as a model itself, rather than as a

statement of reality.

We suggest that AIC model averaging implicitly uses

the same structure as BMI, conditioning on ‘‘truth in the

model set.’’ This becomes clear once one considers

model weights as model probabilities.

MODEL WEIGHTS AS MODEL PROBABILITIES

Model weights have the property of being non-

negative and summing to one. The weight on a

collection of models (say, all those containing a specific

parameter of interest) is obtained by adding up the

weights of the individual models in the collection. For a

finite space of outcomes, these are the defining

characteristics of a probability measure. Model weights

are probabilities. But probabilities of what?

Burnham and Anderson (2004:272) describe the

model weight wi calculated using AIC as the probability

of the event ‘‘that model i is, in fact, the K-L best model

for the data.’’ Here, K-L refers to Kullback-Leibler

distance; the ‘‘K-L best model’’ is the one in the model

set closest to Truth. Given that AIC is an estimator of

K-L distance, the interpretation that Burnham and

Anderson suggest cannot be supported. Suppose that

circumstances were such that AIC approximated K-L

distance to a high degree of accuracy, so that there could

be no uncertainty in the model rankings, and suppose

that there were a unique K-L best model in the model

set. The minimum AIC model, then, would have to be

the K-L best model, even though its AIC weight need

not be 100%. Thus, AIC weights cannot be interpreted

as probabilities ‘‘that model i is, in fact, the K-L best

model for the data.’’

The simplest explanation of model weight wi is as the

probability that Mi is truth, given that truth is in the

model set M; we shall argue that this is not only the

simplest interpretation, but also the only mathematically

legitimate interpretation. No philosophical complica-

tions are attached to it, just as no philosophical

complications are attached to using model-specific

likelihoods to compute estimates and standard errors.

Estimates for model i are obtained assuming that Mi is

Truth, not K-L best.

Readers might ask whether there really is a practical

difference in interpretations of model weights. We will

return to this point presently, after first establishing our
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claim that the simple explanation of model weights

offered in the previous paragraph is the only possible

interpretation.

Consider the use of model weights given by Burnham

and Anderson (2002:448): ‘‘. . . if a parameter h is

common over all models (as hi in model Mi), or our goal

is prediction, by using the weighted average, we are

basing point inference on the entire set of models,

ĥ ¼
XR

i¼1

wiĥi . . . :’’ ð6Þ

Predictions are based on conditional distributions of

unobserved quantities, given present data and given one

or more models. The basis of model-averaged predictions

is the average of the conditional distributions, namely,

PrðPredictionjDataÞ ¼
XR

i¼1

wiPrðPredictionjData;MiÞ: ð7Þ

Note that this is of the same form as Eq. 6, though there

are no circumflexes indicating the use of estimated

parameters in the calculation. If the parameters hi were
known without error (or nearly so), the circumflexes

could also be dropped in Eq. 6; there is no formal

accounting for the uncertainty in parameter estimation in

the definition of AIC weights.

Subject only to mild assumptions, it can be shown

that Eq. 7 is true if and only if

wi ¼ PrðMijDataÞ:

(The requisite condition is that Mi 6¼ Mj implies

Pr(Data jMi) 6¼ Pr(Data jMj), i.e., that there are no

identical models, in terms of probability, in the model

set.) Thus, wi must be interpreted as the probability that

model Mi is true, given that truth is in the model set.

Burnham and Anderson note ‘‘an interesting and recent

finding. . .that AIC can be derived under a formal

Bayesian framework.’’ We take the point a step further,

saying that model weighting has no compelling epis-

temological foundation outside of the Bayesian para-

digm.

Why it matters

Our point in this and the preceding section is that the

issue of whether ‘‘truth is in the model set’’ ought to be

laid aside as an irrelevancy in comparing approaches to

model weighting. Focus instead should be on what is

assumed in the model(s) and the consequences of prior

model weights, whether these are chosen explicitly or

implicitly; we explore the latter possibility subsequently.

We reiterate that Bayesian multimodel inference uses

‘‘truth in the model set’’ as a model itself, rather than as

a statement of reality. In this context ‘‘the probability of

a model’’ is always conditional on a model set, and can

be interpreted as a relative degree of support within that

set. What is more, seeing model weights as model

probabilities provides a natural link between model

selection and model averaging: models are selected and

weighted on the basis of high probabilities.

Once one is willing to regard model weights as

probabilities, the full benefits of the calculus of

probabilities can be brought to bear on the objects of

inference. In particular, Eqs. 2 and 3 can be used to
relate model weights to prior probabilities.

Bayesian inference typically begins with the specifica-
tion of prior probabilities, combining these with

probabilities for observed quantities to produce poste-

rior probabilities via Bayes’ theorem. On the other hand,

we may use Eqs. 2 and 3 to work backwards from

posterior probabilities to prior probabilities. It is then

possible to evaluate a set of model weights in terms of
implicit prior weights, asking what prior weighting

scheme leads to this set of weights as posterior model

weights.

Burnham and Anderson (2004) have essentially done

this, though using the approximation (Eq. 5) instead of

the exact formula (Eq. 3). Substituting

pi ¼
exp½kilogðnÞ=2� ki�XR

r¼1

exp½krlogðnÞ=2� kr�
ð8Þ

in Eq. 5, one obtains

PrðMijDataÞ’
exp � 1

2
AICi

� �
XR

r¼1

exp � 1

2
AICr

� � ;

(the AIC weight). Thus, they named weights pi, defined

by Eq. 8, the ‘‘K-L [Kullback-Leibler] prior’’; this prior

distribution leads to AIC weights as approximate

posterior model probabilities.

It is worth noting that the K-L prior does not depend

on the data, as might be expected in calculating an

implicitly defined prior from a set of model weights. It
does, however, depend on the sample size. For fixed n .

7, it is clear that the larger the value of kj, the larger the

value of exp(kj log(n)/2� kj); if kj . kh, model j will be

preferred a priori over model h. The difference in prior

weight can be surprisingly large, as will be seen in our

subsequent example. Given Burnham and Anderson’s
perspective that truth is infinite dimensional (Burnham

and Anderson 1998:11), priors similarly depending on n

and k have some appeal: Burnham and Anderson label

such as ‘‘savvy priors.’’

Such priors are unconventional in Bayesian analysis.

An appealing feature of Bayesian analysis is that in all

but pathological cases, posterior inference is increasingly

influenced by the data, rather than the prior, as sample
size increases. It is said that the data ‘‘overwhelm the

prior.’’ If, however, the prior is allowed to vary as

sample size increases, the data may not overwhelm the

prior. An illustration of the pathological effects of

allowing the prior to depend on the sample size is given

in the Appendix: the posterior mean can be an
inconsistent estimator, i.e., one which converges in
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probability to the wrong value as sample size increases

without bound.

One must ask whether a ‘‘savvy’’ prior will not

produce similarly undesirable results in multimodel

analysis. Our point is not to dismiss AIC weights, but

to argue the importance of knowing what one’s methods

are doing.

Part of the appeal of AIC lies in the simplicity of its

calculation. The generalized BIC weights (Eq. 5) are

equally easy to calculate, but allow the specification of

prior model weights, rather than passive acceptance of a

default prior. If the default prior is used, it is important

that the implications of this choice be fully understood;

if the default prior does not reasonably summarize prior

beliefs, then other priors must be considered. As stressed

elsewhere (Anderson et al. 2001), a crucial component of

reporting Bayesian analyses is reporting the priors used;

it is, in our view, a mistake to unquestioningly use the K-

L prior.

Calculation of approximate posterior model weights

using Eq. 5 is easy. Unfortunately, there are serious

problems to be confronted in using Bayesian multimodel

inference. It is tempting to sweep these under the rug,

especially for practitioners likely to be boggled by what

appear to be mathematical niceties. However, failure to

recognize the subtle relationships between posteriors

and priors inherent in multimodel inference can have

profound implications. Model selection and model

averaging are deep waters, mathematically, and no

consensus has emerged in the substantial literature on a

single approach. Indeed, our only criticism of the wide

use of AIC weights in wildlife and ecological statistics is

with their uncritical acceptance and the view that this

challenging problem has been simply resolved.

The difficulties associated with Bayesian multimodel

inference result from selection of priors for parameters

and their effects on Bayes factors. We illustrate these

problems in the next section, then suggest a solution in

the subsequent section in the context of an example.

PROBLEMS WITH BAYES FACTORS

We begin by considering two simple models, neither

containing unknown parameters; in this case, the

marginal distribution is simply f(Data j Mi). Suppose

that the data is an observation, Y, which is either

sampled from a standard normal distribution (M¼ 1) or

from a normal distribution with mean 3 and variance 1

(M¼2). The Bayes factor based on an observation Y¼y

is

BF1;2ðyÞ

¼ f ðyjM1Þ
f ðyjM2Þ

¼
1ffiffiffiffi
2p
p exp � 1

2
y2

� �
1ffiffiffiffi
2p
p exp � 1

2
ðy� 3Þ2

h i ¼ exp
9

2
� 3y

� �
: ð9Þ

Not surprisingly, this is a rapidly decreasing function of

y, equal to one if and only if y¼ 1.5 halfway between the

two hypothesized means (Fig. 1). For y ¼ 1, the Bayes

factor BF1,2(y) is approximately 4.48: we might say that

the evidence favors model 1 over model 2 by a factor of

4.48 to 1. Eq. 3 provides the means for evaluating this

evidence in light of prior knowledge.

Problems with the Bayes factors relate to the

expression of uncertainty in model parameters and are

most in evidence when alternative models have varying

numbers of unknown parameters. To illustrate, suppose

that in the foregoing example we retain from Model 1

that Y is standard normal, but modify Model 2 to be

that the mean is somewhere in the neighborhood of 3,

but not exactly at 3. For example, we might specify

Model 2 as implying that f(y j l, M2)¼N(l, 1), with our

uncertainty about l expressed by the prior g(l jM2) ¼
N(3, r2); here, and subsequently the notation N(m, v),

denotes a normal distribution with mean m and variance

FIG. 1. Bayes factors BF1,2(y) (solid line) and BF2,1(y)
(dashed line). BFi,j (y) is the relative support for model i vs.
model j based on observation y.

FIG. 2. Bayes factor BF1,2(1) (the relative support for model
1 vs. model 2, based on an observation y ¼ 1) as function of
uncertainty r under model 2.
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v. Using Eq. 1, it follows that f(y jM2)¼N(3, 1þr2), so

the Bayes factor is

BF1;2ðyÞ ¼
1ffiffiffiffi
2p
p exp � 1

2
y2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1þr2Þ
p exp � 1

2ð1þr2Þ ðy� 3Þ2
h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
exp �r2y2 þ 6y� 9

2ð1þ r2Þ

� 	
:

It is interesting to examine the effect of the prior

uncertainty on the Bayes factor. Fig. 2 displays the

Bayes factor for an observation y¼1, as a function of r.
Note that the evidence in favor of Model 1 starts at the

value 4.48 previously calculated, when r¼ 0, then drops

to a minimum of 2.0 when r ¼ 1.73 (r2 ¼ 3). The

performance of the Bayes factor is reasonable: as r
increases from zero, the plausibility under Model 2 of an

observation y ¼ 1 increases. With r2 ¼ 3, the marginal

variance of Y under Model 2 is 4; hence, y¼1 is only one

standard deviation away from the mean, as opposed to 2

standard deviations away when r2 ¼ 0 (recall that the

marginal variance is 1 þ r2). However, as r2 increases

beyond 3, the marginal distribution under Model 2

becomes increasingly diffuse, making any particular

observation increasingly implausible.

For a fixed value of r, BF1,2(y) tends toward zero as y

tends toward plus or minus infinity: extreme values of y

are simply inconsistent with Model 1, which specifies a

standard normal distribution for Y. But it is troubling

that for a fixed value of y, as r increases without bound,

so does the Bayes factor. Large values of y augur against

Model 1, but how large they must be depends on r. We

may be tempted to set r to a large value in expressing

our uncertainty about l under Model 2, but in so doing

we make BF1,2(y)� 1 for all but extremely large values

of y, thus favoring Model 1 in our analysis.

This observation presents a difficulty for objective

Bayesian analysis, in which vague, even improper, priors

are placed on parameters. In estimating the mean of a

normal distribution, it is a common expedient to treat the

mean as having been sampled from a (conjugate) normal

prior with infinitely large variance. This expedient is

innocuous enough for the purposes of estimation, but

calamitous for multimodel inference andmodel selection:

Bayes factors are unstable in the presence of improper,

noninformative priors for model parameters, and espe-

cially so when there are varying numbers of parameters

in different models under consideration. Berger and

Pericchi (1998) note that these problems extend to the use

of vague proper priors. Loosely speaking, we may

identify the problem as that models having more

parameters allow greater prior uncertainty in the range

of the data to be produced; this is reflected in typically

lower values for the marginal distribution function of the

data, hence a tendency for the Bayes factor to be large in

comparing a simple model to a more complex model. The

greater the uncertainty in the collection of priors, the

more serious the problem becomes.

The example presented may seem artificial, being

based on a sample of size one. However, the small

sample size was chosen merely for ease of presentation,

and is not the source of the difficulty. Given a sample of

n, independent observations of a normal random

variable and the same models as before, the Bayes

factor can be shown to be

BF1;2ðyÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nr2

p
exp �3nyþ 9n

2
� n2r2

2ðnr2 þ 1Þ

� 	
ðy� 3Þ2


 �

where y is the sample mean. For fixed n and y, the

quantity in the exponential approximates �ny2/2 as r2

increases, but the quantity under the radical increases

without bound. Thus, the selection of a vague prior for l
inevitably leads to favoring Model 1 over Model 2. Note

that conditional on Model 2, the posterior distribution

for l is normal with mean and variance converging to y

and 1/n as r2 increases without bound, a perfectly

reasonable basis for inference, conditional on the model.

The vague prior on l is harmless for estimation, but has

undesirable consequences for model selection.

There has been considerable theoretical work put to

the problem of defining stable Bayes factors, primarily

through the specification of reasonable default priors for

model parameters (Berger and Pericchi 1996, 1998,

Kadane and Lazar 2004). The issues are highly

technical, and difficult. Nevertheless, the Bayesian

paradigm for multimodel inference is quite simple,

having two components. First, prior model weights are

chosen independent of data. Then, priors for parameters

are selected for each model; given data, these allow

computation of Bayes factors. Bayes factors are then

combined with prior model weights to compute poste-

rior model weights. While there are technical difficulties

to be overcome, we suggest that they are not insur-

mountable and that Bayesian multimodel inference is a

philosophically satisfying and self-consistent approach

to dealing with model uncertainty; indeed, it is our

conviction that there is no valid epistemological basis for

model weighting outside of the Bayesian paradigm.

Given reasonable choices of priors for parameters, the

Bayes factor can be calculated and used as the basis of

passing from prior to posterior model weights. Assessing

the reasonableness of selected priors is inevitably a

subjective process, subjective but honest, if the process

of selection is made transparent in the presentation of

results. It is, to our mind, far better to lay subjective

choices out on the table and to present a mathematically

precise analysis, than to ignore automatic choices in

approximate analyses and to mistake arbitrariness for

objectivity.

EXAMPLE

Our example is from a study of brown trout (Salmo

trutta) spawning in a tributary of Lake Brunner, located

in the West Coast region, South Island, New Zealand.
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Logistic regression analysis was used to model the return

rate of spawning trout one year after they were caught

and tagged in the spawning run of June 1987. Interest

was in whether the return rate differed between males

and females and whether it differed according to the

initial length of the fish.

Priors chosen for parameters

All of the models we consider are of the form

gi [ logitðpiÞ ¼ b0 þ b1x1;i þ � � � þ bkxk;i: ð10Þ

We consider five models: Model 1: Constant; Model 2:

Length; Model 3: Sex; Model 4: Sex þ Length; and

Model 5: Sex þ Length þ Sex 3 Length.

We must choose model-specific priors on the regres-

sion coefficients bj, and in so doing, bear in mind the

difficulties inherent to Bayes factors when vague priors

are assigned. The example presented shows that these

problems relate to varying degrees of total prior

uncertainty in the various models. Hence, we propose

defining a parameter V, common to all models,

representing the total variability of the linear predictor

g in Eq. 10. Given that the regressors xj,i have been

standardized across i, the total variability of gi can be

shown to be equal to the sum of the prior variances of

the bjs.
Suppose that model i has k regressors, hence ki þ 1

parameters. Our approach is to assign mean zero normal

priors with variance V/(kiþ 1) to the b’s included in the

model. This way, regardless of the number of parame-

ters in the model, the total prior uncertainty in the linear

predictor is fixed.

We must also choose a prior for V. This parameter,

acting like a variance, is naturally endowed with an

inverse Gamma prior. We considered two choices of

prior. In the first, we supposed that 1/V has mean p/k¼
3.2890/7.8014 ¼ 0.4216, and variance/mean ratio of 1/k
¼1/7.8014¼0.1282. In the second, we supposed that 1/V

has mean p/k¼ 0.001/0.001¼ 1.000, and variance/mean

ratio of 1/k ¼ 1/0.001 ¼ 1000. The latter is a standard

vague prior for a variance parameter; the former has the

appealing property that if, given V, logit(p) is a mean-

zero normal random variable with variance V, then

marginally p has a distribution that is approximately

uniform on the unit interval. Thus, both priors were

chosen to represent absence of prior knowledge of

parameters.

For ease of description, we refer to the two priors as

pU (the ‘‘U’’ calling to mind the uniform distribution)

and pD (the ‘‘D’’ calling to mind the more diffuse

distribution). Finally, in order to illustrate the problems

with Bayes factors resulting from vague priors, we

consider a prior set pV, with independent, identically

distributed normal priors on all coefficients in Eq. 10,

these having mean of zero and variance equal to 1000. In

light of the example in the section on difficulties with

Bayes factors and vague priors, we anticipated that pV
would lead to Bayes factors highly and unrealistically

favoring the most simple model. We also anticipated

that the priors pU and pD were sufficiently uninforma-

tive to yield posterior distributions for parameters

similar to those arising from the use of pV.
Given a prior on the parameters, the task is to

compute Bayes factors. We performed this calculation

using Markov chain Monte Carlo (MCMC). The results

we report were obtained using Reversible Jump MCMC

(RJMCMC; Green 1995), implemented in program

GAUSS (Aptech Systems, Black Diamond, Washing-

ton, USA). These calculations can also be performed

using program WinBUGS (Spiegelhalter et al. 2000)

with code available online (see Supplement) though at

considerably greater expense in computation time.

Having obtained Bayes factors, one may convert priors

on models to posterior model weights by means of Eq. 3.

We also computed maximum likelihood estimators, and

the BIC, in order to approximate the posterior model

probabilities by the weighted BIC given in Eq. 5.

Priors on models

We considered four sets of priors for models. For the

sake of comparison, we chose the Burnham and

Anderson K-L prior. We also considered uniform prior

model weights (weight ¼ 1/5 on each of the five models

considered); Ockham weights (favoring parsimonious

models, with prior weights proportional to exp[�number

of parameters]), and Complexity weights (moderately

favoring more complex models as a reflection of the

notion that Truth is complex, proportional to exp(num-

ber of parameters)). Note that for each specification of

priors on model parameters, the transformation of prior

model weights to posterior model weights involves the

same set of Bayes factors.

Computation of Bayes factors

Implementation of Bayesian multimodel inference

using MCMC treats ‘‘Model’’ as a latent categorical

variable. For each set of priors on parameters, we began

by performing an analysis with uniform prior proba-

bilities on models, using the Markov chain output to

compute approximate posterior model probabilities; we

used the uniform priors and approximate posterior

model probabilities to make an initial approximation to

the Bayes factors. In the interest of having all five

TABLE 1. Bayes factors BF(1, j ) for comparing models 1 and j,
calculated using three different priors on parameters (pU, pD,
and pV); comparisons for models i and j can be based on BF
(i, j )¼ BF (1, j ) / BF (1, i). The BIC (Bayesian information
criterion) approximation for comparing models 1 and j is
exp[�(1/2)BIC1]/exp[�(1/2)BICj].

Prior
and BIC BF (1,2) BF (1,3) BF (1,4) BF(1,5)

pU 12.4 31.7 281.7 390.1
pD 13.1 33.8 288.9 355.8
pV 109.2 282.4 31 603.8 563 509.7
BIC 16.1 42.4 712.3 3723.7
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models adequately sampled and the Markov chain

adequately mixed, we used these approximate Bayes

factors to choose model priors that would induce nearly

constant posterior model probabilities, then re-ran our

analyses generating chains of length 5 000 000 after a

burn-in of length 100 000. These specified priors, and the

resulting approximate posterior model weights were

then used to recalculate the Bayes factors (this method

of tuning the MCMC algorithm was suggested by Carlin

and Chib [1995]). These calculations took approximately

6.5 hours when implemented using RJMCMC in

GAUSS. The simulations were long enough to ensure

good mixing of the chains, as indicated by examination

of within-chain autocorrelation and comparison of

parallel chains; we estimate that the Bayes factors are

correct up to a factor of 62%. We note that run time for

our WinBUGS code is about six times longer for chains

of the same length. The results we present are nearly

identical to results obtained in WinBUGS using chains

of length 1 000 000.

Results

Bayes factors and the BIC approximation are given in

Table 1. The first thing to note is that, for all of the

priors considered, Model 1 is favored over the others;

Kass and Raftery (1995) describe weights of evidence in

favor of one model over another as Positive (3 , BF �
20), Strong (20 , BF � 150), and Very Strong (BF .

150). The vague prior pV, having greater prior un-

certainty in more complex models, massively overstates

the evidence in favor of Model 1 against the others; had

we used prior variances of 100 000 rather than 1000, the

overstatement would have been even greater. Priors pV

and pD, based on partitioning the total prior variance of

the linear predictor, so as to avoid the problems evident

in analysis based on pV, yield similar inferences.

Bayes factors are determined by the set of models, the

priors chosen for their parameters, and the data, but do

not depend on the set of prior model weights. Table 2

presents the set of four priors for the set of five models,

and the resulting posterior distributions. We regard the

first three priors (Ockham, Constant, and Complexity)

as reflecting reasonable levels of prior uncertainty, with

the Ockham and Complexity priors representing mod-

erate predispositions toward parsimony and complexity.

The K-L prior, however, puts prior weight of .99% in

favor of the two most complex models, and odds of

4621:1 against the simplest model. The posterior weights

using BIC and the K-L prior are the AIC weights.

In contrast to the K-L prior, each of the first three

priors (Ockham, Constant, and Complexity) result in

most (.72%) of the posterior model weight being placed

on the constant model. It is remarkable that, despite the

overwhelming prejudice the K-L prior exhibits against

the simplest model, the AIC weights still place com-

parable weight on the simplest (25.5%) and most

complex (29.6%) models, and none of the models

appears unreasonable on the basis of posterior proba-

bility; the data appear to have fought back against a

highly prejudicial prior. However, we are more inclined

to trust analyses based on the fully Bayesian analyses

with priors pU and pD; these priors on parameters do

not inequitably influence the Bayes factor comparisons

of models (as does pV), nor are they based on doubtful

approximations, as BIC. That said, the K-L prior leads

to posterior model weights that still reflect the K-L

prior’s prejudices: the posterior odds ratio for the most

TABLE 2 Four priors: Ockham [favors parsimony, prior
weights proportional to exp(�k)], Constant [equal weights],
Complexity [favors complex models, prior weights propor-
tional to exp(k)], and K-L [weights given by Eq. 8], on five
models (Constant, Length, Sex, Sex þ Length, and Sex 3
Length).

Prior Constant Length Sex S þ L S 3 L

Ockham 0.521 0.192 0.192 0.070 0.026

pU 0.960 0.028 0.011 0.000 0.000
pD 0.962 0.027 0.010 0.000 0.000
pV 0.995 0.003 0.001 0.000 0.000
BIC 0.969 0.022 0.008 0.000 0.000

Constant 0.200 0.200 0.200 0.200 0.200

pU 0.894 0.072 0.028 0.003 0.002
pD 0.899 0.069 0.027 0.003 0.003
pV 0.987 0.009 0.003 0.000 0.000
BIC 0.920 0.057 0.022 0.001 0.000

Complexity 0.029 0.080 0.080 0.218 0.592

pU 0.723 0.158 0.062 0.019 0.037
pD 0.729 0.152 0.059 0.019 0.041
pV 0.966 0.024 0.009 0.000 0.000
BIC 0.801 0.135 0.051 0.008 0.004

K-L 0.0002 0.0035 0.0035 0.0574 0.9353

pU 0.063 0.088 0.035 0.064 0.751
pD 0.059 0.079 0.031 0.058 0.773
pV 0.807 0.129 0.050 0.007 0.007
BIC 0.255 0.257 0.098 0.095 0.296

Note: Beneath each model prior is the set of posterior model
weights computed using the Bayes factor determined by pU, pD,
and pV, and by the BIC.

TABLE 3. Features of posterior distributions for parameters of
Model 5 (b0¼ constant, b1¼ length effect, b2¼ sex effect, b3

¼ length 3 sex interaction), resulting from three priors on
parameters (pU, pD, and pV).

Prior Parameter Mean SD 2.5% Median 97.5%

pD b0 �3.03 0.11 �3.25 �3.02 �2.82
b1 0.51 0.21 0.10 0.51 0.92
b2 0.03 0.11 �0.18 0.03 0.24
b3 �0.41 0.21 �0.82 �0.41 �0.01

pU b0 �3.01 0.11 �3.23 �3.01 �2.80
b1 0.49 0.21 0.09 0.49 0.89
b2 0.03 0.11 �0.18 0.02 0.24
b3 �0.40 0.20 �0.79 �0.39 0.00

pV b0 �3.04 0.11 �3.26 �3.04 �2.83
b1 0.53 0.21 0.11 0.53 0.95
b2 0.03 0.11 �0.18 0.03 0.25
b3 �0.43 0.21 �0.84 �0.43 �0.02

Note: Posterior summaries are the mean, standard deviation
(SD), 2.5th, 50th (median), and 97.5th percentiles.
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complex against the simplest model are 46.4 and 63.5,

for pU and pD.
Finally, we note that the informative prior, pU, and

the diffuse constant variability prior, pD, lead to

posterior distributions for parameters that are essen-

tially equivalent to those obtained using the vague prior

pV (Table 3). Many Bayesian practitioners would

naturally feel more comfortable using pV as the basis

of an objective Bayesian analysis; the problematic effects

of vague priors on Bayes factors are avoided using pU or

pD, without substantial effects on the estimates of model

parameters.

SUMMARY AND CONCLUSIONS

The introduction of AIC weights to the field of

wildlife and ecological applications has been a signifi-

cant and positive development for multimodel inference.

However, there is substantial room for improvement;

specifically, there is a need for greater understanding of

latent assumptions, a need for greater flexibility in

implementation, and a need for improved accounting for

parameter uncertainty in choosing model weights.

Model averaging has a sound logical foundation in

Bayesian inference; in this context, one may examine the

tendency of AIC weights to favor complex models, one

may choose alternative prior weights reflecting other

intellectual predispositions, and one may provide a

formal accounting for parameter uncertainty.

Bayesian multimodel inference requires the explicit

specification of priors for parameters and priors for

models. The set of Bayes factors characterizes all that

the models and priors for parameters say about the data;

Bayes factors are invariant to the choice of priors on

models.

Bayes factors can be sensitive to the choice of priors

on parameters, much more so than Bayesian estimation.

This sensitivity is especially in evidence when vague

priors are used for models having different numbers of

parameters. In cases where alternative models involve a

linear predictor, partitioning an estimated total prior

variance of regression coefficients seems a reasonable

expedient to dealing with this sensitivity.

All implementations of Bayesian multimodel inference

involve specification of priors on parameters and priors

on models; the issues that we have identified in regard to

Bayes factors are present regardless of the method used

to fit the models (e.g., whether one uses reversible jump

Markov chain Monte Carlo [Green 1995] or implemen-

tations such as presented in our WinBUGS code.

The beauty of the Bayesian calculus is in its trans-

parency and precision: posterior distributions are

exactly determined by specification of models for data,

priors for parameters, and prior model weights; there is

no need for approximations of unknown precision, no

need for dubious asymptotics, no need for buried

assumptions. It is incumbent on the analyst to clearly

articulate the reasons for choice of priors, and to

evaluate the sensitivity of inferences to these assump-

tions. Analysts may wish to choose priors favoring more

complex models, or they might wish to choose other-

wise; either way, the choice should be clearly articulated.

The K-L prior, used to justify AIC weighting, might

favor complex models more heavily than desired. In this

case, a computationally simple, but essentially equiv-

alent approach, is to use BIC weights, with alternative

prior model weights.

Bayesian model weighting begins with a set of models,

and prior probabilities that each is ‘‘Truth,’’ given that

‘‘truth is in the model set.’’ This formulation does not

require that truth be in the model set; rather, it provides

a framework for evaluating relative degrees of support

in a specified context.

As emphasized by Burnham and Anderson, careful

thought should go into the selection of a model set;

model selection and model averaging are rather pointless

exercises if none of the models under consideration is

any good. But how do we know if models are any good?

The standard approach (e.g., goodness-of-fit testing) is

to compare the data to some prediction of what the data

should look like under the model. Ultimately, our faith

in a model should depend on how well it predicts future

events, rather than how well it fits the data at hand.

After all, it is not the elegant mathematics behind

Newton’s theory of gravity that convinces us that it

provides a useful approximation. It is the fact that the

predictions can be verified, and indeed are, in high

school physics laboratories around the world. It is our

impression that formal model selection and model-

averaging techniques have tended to move some

ecological and wildlife researchers toward the view that

analysis of a single data set can be conclusive. Scientists

should not rely on model weights from a single data set

to form definite views on how the world works. We see

the main role of such analyses as hypothesis generation

and multimodel inference as an important tool in this

context. However, we also believe that much more

attention needs to be paid to the careful design and

evaluation of evidence from follow-up studies; it is the

iterative process of hypothesis generation and model

evaluation that brings about advances in scientific

thought. The Bayesian paradigm provides a formal

mechanism for accumulating information and refining

models.

We believe that ecologists and wildlife biologists

ought to prefer designed experiments and to conduct

such whenever possible. However, all analyses are, at

some level, model-based; the purpose of designed

experiments is to increase the confidence the scientist

can have in the collection of models considered. Multi-

model inferential techniques ought not to be regarded as

an excuse for sloppy planning or data collection.
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APPENDIX

Inconsistency of posterior mean when prior depends on sample size (Ecological Archives E087-159-A1).

SUPPLEMENT

WinBUGS files for analysis of trout data (Ecological Archives E087-159-S1).
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William A. Link and Richard J. Barker. 2006. Model weights and the foundations of 
multimodel inference. Ecology 87:2626–2635.  

Appendix A. Inconsistency of posterior mean when prior depends on sample size.  

As an illustration of the consequences of having priors depend on sample size, consider the case of a 
Binomial random variable X consisting of N independent Bernoulli trials with success parameter p. 
Suppose p has a beta prior distribution with parameters a and b, denoted  . The posterior 
distribution of p is  with mean 

this is a weighted average of the prior mean  and the maximum likelihood estimator 
 The important feature is that as , the weight on the prior mean goes to zero, provided 

that a and b are fixed. 

Now suppose that  is fixed, but that (a + b) = kN, for a fixed value of k. Then the posterior 
mean becomes 

The weight on the prior mean does not go to zero as  . Indeed, the posterior mean converges to 
something different than the MLE, hence is not consistent. 
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